This invention is a method of eliminating the number of microorganisms on the surface of skin, hair or nails, by contacting these surfaces with a water stable, antimicrobial silanol quaternary ammonium compounds (SQACs) and the trisilanol, polysiloxanol and water soluble polysiloxane derivatives thereof. The stabilizing agent is selected from a list of volatile, antimicrobial, naturally occurring, renewable phytochemical essential oils and extracts that easily form crystal clear microemulsions when water is added to the concentrated SQAC/essential oil mixture. These non-foaming oil in water microemulsions have excellent long term storage stability, are freeze/thaw stable, remain very low in viscosity and do not phase separate or precipitate for many months. Many of the essential oils found to be useful in this process are non-toxic food additives and have pleasant scents, have low flammability yet are volatile enough to evaporate upon cure down of the SQAC, thereby resulting in a higher concentration of SQAC in the cured, antimicrobial film. Economically shippable concentrations of the stabilized SQACs can be further diluted with water to application concentrations without loosing any of their stabilizing properties and remain storage stable at these lower concentrations indefinitely. In particular, the invention relates to the use of such viscosity controlled aqueous dilutions cured as durable antimicrobial coatings for human or animal skin that covalently bond to the skin, remain active through many washings and reduce or eliminate bacteria, viruses and fungi for days.