A novel method for freeze-related separations, involving the combination of water with a selected concentration of biogenic ice nucleation proteins, freezing the combination, and separating the ice, potentially via centrifugation or sublimation. In some instances, the freezing conditions and the concentration of the at least one biogenic ice nucleation protein are selected such that the aqueous solution, upon freezing, forms a lamellar ice crystal structure having at least one property selected from the group consisting of a solute inclusion volume at least 30% smaller than in the first material alone, a hydraulic diameter at least 30% larger than in the first material alone, an inclusion width that is less than 10% of a crystal dimension, a hydraulic diameter that is less more than 1.5 times that of an inclusion width, a deviation of crystal orientation angle in the transverse direction of less than 45 degrees, an ice crystal length in the transverse direction that is at least 10% larger than in the first material alone, and a length of the ice crystal structure in the longitudinal direction that is at least 10% larger than in the first material alone. The use of these structures result in a significant efficiency improvement and energy savings.