An Automated Surgical instrument is disclosed that is computer controlled and provided with a high degree of autonomy for performing automated procedures within humans and other animals. It may be mobile under its own control and may include a plurality of means to disrupt tissue including lasers and water jets. A method of providing barriers to prevent unwanted damage to tissue is also described. The instrument may be used to construct both artificial and biological structures in-vivo by taking advantage of 3D printing techniques made available by the flexible laser system disclosed, a selection of micro tools, and raw material delivery to the worksite for printing to the target area. The use of vibration generated electricity may avoid the need for wires or batteries. A particular embodiment for automated cataract surgery is described.