For soft tissue deformation prediction, a biomechanical or other tissue-related physics model is used to find an instantaneous state of the soft tissue. A machine-learned artificial neural network is applied to predict the position of volumetric elements (e.g., mesh node) from the instantaneous state. Since the machine-learned artificial neural network may predict quickly (e.g., in a second or less), the soft tissue position at different times or a further time given the instantaneous state is provided in real-time without the minutes of physics model computation. For example, a real-time, biomechanical solver is provided, allowing interaction with the soft tissue model, while still getting accurate results. The accuracy allows for generating images of a soft tissue with greater accuracy and/or the benefit of user interaction in real-time.