Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems. The disclosure also includes photocatalytic materials incorporated on the surface of packaged LEDs, LED lamps and LED luminaires, with photocatalytic materials incorporated on optically useful luminaire surfaces or on the surface of the remote phosphor. The disclosure also includes ultrathin photocatalytic materials incorporated on surfaces to affect antibacterial and antiviral properties.