A material or biomaterial comprising silicic acid condensates having a low degree of cross-linking, and methods for its production are subject-matter of the invention. A method for the production of silicic acid structures having a low degree of cross-linking is disclosed, wherein a sol is produced, wherein further condensation is prevented when specific cross-linking of the silicic acid is reached, wherein, preferably, structures having a size of 0.5-1000 nm are produced, e.g. polyhedral structures or aggregates of the same. Further condensation can be prevented by means of mixing with a polymer. In one embodiment, this comprises nano-structured, silicon dioxide (SiO2) having a low degree of cross-linking that is embedded in a polymer matrix. The material can be used in medicine for therapeutic purposes, and can enter into direct contact with biological tissue of the body in this connection. This material herein enters into chemical, physical, and biological interactions with the corresponding biological systems. It can herein be decomposed, and can act as a supplier for the silicic acid required for metabolism. Furthermore, it can have a supportive or shielding effect. It can be present as a granulate, microparticles, fiber, and as a woven or nonwoven fabric produced therefrom, or as a layer on implants or wound dressings. The material can be used as a medical device or as a nutritional supplement.