The invention provides a urine sensing device and methods therefor to estimate the volume of urine in a bladder in a non-invasive, real time manner. The urine sensing device comprises plurality of drive electrodes and sensors configured to be positioned in contact with or proximal to skin of the abdomen region of a human such that the relative positions of the drive electrodes and the sensors are known. The plurality of drive electrodes are capable of exciting the abdomen region with an electrical current comprising a plurality of frequencies. The plurality of sensors are capable of measuring at least one electrical parameter from each of the plurality of drive electrodes and the plurality of sensors. Based on the measured values of the at least one electrical parameter, the volume of urine in the bladder is estimated, while taking the electrical conductivity from the bladder tissue, skin, and other extraneous factors into account.