Disclosed is an anti-viral member which can inactivate a virus. Specifically disclosed is an anti-viral member which is characterized by comprising a base material, univalent copper compound microparticles, and inorganic microparticles which are provided for the purpose of retaining the univalent copper compound microparticles on the base material and each of which has a silane monomer bound to the surface thereof via a chemical bond, wherein the inorganic microparticles are bound to one another via chemical bonds formed between the silane monomers provided on the surfaces thereof, and each of the inorganic microparticles is bound to the base material via a chemical bond between the silane monomer and the base material to form spaces inwhich the univalent copper compound microparticles are to be retained. The anti-viral member has an extremely high anti-viral activity compared to those achieved by the conventional binder immobilization techniques, and is applicable to various materials or various products to which the materials are applied.