The invention provides an articulating mechanism useful, for example, for remote manipulation of various surgical instruments and diagnostic tools within, or to, regions of the body. Movement of segments (A1, B1, D1) at the proximal end (106, 107, 121, 606, 806, 1711, 1801) of the mechanism results in a corresponding, relative movement of segments (A2, B2, D2) at the distal end (108, 109, 123, 604, 808, 1721, 1822) of the mechanism. The proximal and distal segments are connected by a set of cables (104) in such a fashion that each proximal segment forms a discrete pair with a distal segment. This configuration allows each segment pair to move independently of one another and also permits the articulating mechanism to undergo complex movements and adopt complex configurations. The articulating mechanisms may also be combined in such a way to remotely mimic finger movements for manipulation of an object or body tissue.