您的位置: 首页 > 农业专利 > 详情页

Deep image-to-image recurrent network with shape basis for automatic vertebra labeling in large-scale 3D CT volumes
专利权人:
Siemens Healthcare GmbH
发明人:
Dong Yang,Tao Xiong,Daguang Xu,Shaohua Kevin Zhou,Mingqing Chen,Zhoubing Xu,Dorin Comaniciu,Jin-hyeong Park
申请号:
US15886873
公开号:
US10366491B2
申请日:
2018.02.02
申请国别(地区):
US
年份:
2019
代理人:
摘要:
A method and apparatus for automated vertebra localization and identification in a 3D computed tomography (CT) volumes is disclosed. Initial vertebra locations in a 3D CT volume of a patient are predicted for a plurality of vertebrae corresponding to a plurality of vertebra labels using a trained deep image-to-image network (DI2IN). The initial vertebra locations for the plurality of vertebrae predicted using the DI2IN are refined using a trained recurrent neural network, resulting in an updated set of vertebra locations for the plurality of vertebrae corresponding to the plurality of vertebrae labels. Final vertebra locations in the 3D CT volume for the plurality of vertebrae corresponding to the plurality of vertebra labels are determined by refining the updated set of vertebra locations using a trained shape-basis deep neural network.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/
相关发明人
相关专利

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充