您的位置: 首页 > 农业专利 > 详情页

一种面向植物叶片的多样化图像检索的自适应的鲁棒CMVM特征降维与抽取方法
专利权人:
合肥工业大学
发明人:
赵仲秋,黄德双,马林海,吴信东
申请号:
CN201210285036.X
公开号:
CN102880638B
申请日:
2012.08.10
申请国别(地区):
中国
年份:
2015
代理人:
余成俊
摘要:
本发明公开了一种面向植物叶片的多样化图形检索的自适应的鲁棒CMVM特征降维与抽取方法,从图像流形特征抽取和选择层面展开研究,采用的约束最大差异投影(CMVM)半监督流形降维方法既有保持正类局域“子概念”区分性的能力,又有强化正反类别即“概念”的区分性的能力。本发明提出去除噪声点方法和CMVM强化正类局域保持算法以保持“子概念”的可区分性;提出线性近似法来解决CMVM样本外点学习问题;提出设计多样化检索的“有序”层次最大间隔相关性评价函数来进行CMVM流形参数的选择和图像本征维数的估计;本发明也提出从CMVM特征中挖掘区分正类类内“子概念”的最大差异本征特征方法,以此进行聚类多样化学习,提高了植物图像检索的多样性。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充