A computer system and computer-implemented techniques for determining crop harvest times during a growing season based upon hybrid seed properties, weather conditions, and geo-location of planted fields is provided. In an embodiment, determining crop harvest times for corn fields may be accomplished using a server computer system that receives over a digital communication network, electronic digital data representing hybrid seed properties, including seed type and relative maturity, and weather data for the specific geo-location of the agricultural field. Weather data includes temperature, humidity, and dew point for a specified period of days. Using digitally programmed equilibrium moisture content logic within the computer system to create and store, in computer memory, an equilibrium moisture content time series for the specific geo-location that is based upon weather data. The equilibrium moisture content is used to determine the rate of grain dry down because it gives a basis for how strongly water vapor will dissipate from a kernel to open air. Using digitally programmed grain moisture logic of the computer system to calculate and store in computer memory R6 moisture content for a specific hybrid seed based on a plurality of hybrid seed data. Using digitally programmed grain dry down logic of the computer system to create and store in computer memory a grain dry down time series model for the specific hybrid seed at the specific geo-location that represents the estimated moisture content of the kernel over specified time data points. The grain dry down time series is based upon the equilibrium moisture content time series, the estimated R6 date, the estimated R6 moisture content value, and specific hybrid seed properties. Using digitally programmed harvest recommendation logic of the computer system to determine and display a harvest time recommendation for harvesting crop grown from a specific hybrid seed plant based on the grain dry down time series and the