New nanotechnology and other small-scale devices for performing intravenous medical procedures are provided. In some aspect of the invention, a group of encapsulated injectable machines is delivered intravenously into a bloodstream via a syringe. A treatment area within a patients body is specified and targeted for action by an external control system, which also monitors blood flow and other environmental. Externally applied magnetic and/or electrostatic signaling and direction devices controlled by the control system then trigger the release of encapsulation layers surrounding the injectable machines upon reaching the treatment area. The externally applied magnetic signaling and direction devices then drive the machines into treatment targets within the treatment area, exploiting an overall charge and polarity of the machines distinct from their condition during encapsulation. Pulsed magnetic fields then cause polarized moving parts within the machines to move counter to one another, with opposing angled edges breaking up the treatment target. In some embodiments, the machines may also or alternatively deliver a magnetically- or electrostatically-released medication or device to the treatment target. In still other embodiments, a local control unit within the devices may direct additional, more sophisticated actions, which actions may be directed or triggered by external signaling from the externally-applied magnetic signaling and direction devices, or other aspects of the external control system.