A highly sensitive trace gas sensor based on Cavity Ring-down Spectroscopy (CRDS) makes use of a high power, multi-mode Fabry-Perot (FP) semiconductor laser with a broad wavelength range to excite a large number of cavity modes and multiple molecular transitions, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. The laser beam is aligned on-axis to the cavity, improving the signal-noise-ratio while maintaining its vibration insensitivity. The use of a FP semiconductor laser has the added advantages of being inexpensive, compact and insensitive to vibration. The technique is demonstrated using a laser with an output power of at least 200 mW, preferably over 1.0 Watt, (λ=400 nm) to measure low concentrations of Nitrogen Dioxide (NO2) in zero air. For single-shot detection, 530 ppt sensitivity is demonstrated with a measurement time of 60 μs which allows for sensitive measurements with high temporal resolution.