Disclosed are embodiments of methods and systems for predicting a health condition of a first human subject. The method comprises extracting a historical data including physiological parameters of one or more second human subjects. A latent variable is determined based on an inverse cumulative distribution of a transformed historical data, determined by ranking of the historical data. Further, one or more parameters of a first distribution, deterministic of health conditions in the historical data, are determined based on the latent variable. For each physiological parameter, a random variable is sampled from a second distribution of the physiological parameter based on the one or more parameters. Further, based on the random variable, the latent variable is updated. Thereafter, the one or more parameters are re-estimated based on the updated latent variable. Based on the first distribution a classifier is trained to predict the health condition of the first human subject.