A system and method for converting medical images of a particular patient into high resolution, 3D dynamic and interactive images interacting with medical tools including medical devices by coupling a model of tissue dynamics and tool characteristics to the patient specific imagery for simulating a medical procedure in an accurate and dynamic manner. The method includes a tool to add and/or to adjust the dynamic image of tissues and ability to draw and add geometric shapes on the dynamic image of tissues. The system imports the 3D surgery plan (craniotomy, head position, approach etc.). The surgeon establishes multiple views, rotates and interacts with the navigation image to see behind pathology and vital structures. The surgeon can make structures such as tumors, vessels and tissue transparent to improve visualization and to be able to see behind the pathology. The System can warn on proximity of tools to specific anatomical structure.