In one embodiment, a superlens is used to sub-diffraction-limit focus a magnetic field within a volume. A local magnetic field intensity maximum, or “hotspot,” is thereby created that is focused in two spatial directions substantially parallel to the superlens. The hotspot extends from the superlens through one or more coplanar layers of the volume. An electric field is superimposed over the magnetic field within the volume to be imaged. The superposition of electric and magnetic fields induces localized Lorentz forces. The modulation of the magnetic and/or electric field causes the portion of the volume in the hotspot to vibrate and emit acoustic signals at a frequency suitable for acoustic imaging. An acoustic transducer receives the emitted acoustic signals. The location from which the acoustic signals are emitted is constrained in two dimensions by the superlens. Time-gating the acoustic signals received from the hotspot is used to localize the received acoustic signals in the third dimension.