Radar imaging for medical diagnosis addresses the need for non-ionizing and low-cost alternatives to conventional medical diagnosis methods, such as mammography x-ray techniques, which expose patients to ionizing radiation for cancer detection. An ultra wide band (UWB) sensor can produce very fine beams at the V- or W-bands using beam forming techniques developed specifically for wafer scale antenna arrays. The high bandwidth radio waves can penetrate tissue and resolve tissue anomalies with high-resolution. Pseudo-random coding creates a signal that allows the correlating receiver to extract very low energy reflected signals from background noise providing coding gain. An integrated panel of sensor antenna arrays enables rapid scanning of the subject area, such as breast tissue, to detect anomalies by eliminating the need for mechanical scanning (e.g., moving the sensors relative to the subject) because the wafer scale antenna array can instantaneously take the desired topographic picture of the subject area.