您的位置: 首页 > 农业专利 > 详情页

Kernel sparse models for automated tumor segmentation
专利权人:
Andreas Spanias;Jayaraman Jayaraman Thiagarajan;Karthikeyan Ramamurthy;David Frakes
发明人:
Jayaraman Jayaraman Thiagarajan,Karthikeyan Ramamurthy,Andreas Spanias,David Frakes
申请号:
US14853617
公开号:
US09710916B2
申请日:
2015.09.14
申请国别(地区):
US
年份:
2017
代理人:
摘要:
A robust method to automatically segment and identify tumor regions in medical images is extremely valuable for clinical diagnosis and disease modeling. In various embodiments, an efficient algorithm uses sparse models in feature spaces to identify pixels belonging to tumorous regions. By fusing both intensity and spatial location information of the pixels, this technique can automatically localize tumor regions without user intervention. Using a few expert-segmented training images, a sparse coding-based classifier is learned. For a new test image, the sparse code obtained from every pixel is tested with the classifier to determine if it belongs to a tumor region. Particular embodiments also provide a highly accurate, low-complexity procedure for cases when the user can provide an initial estimate of the tumor in a test image.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充