PREPARATION AND APPLICATIONS OF BIOCOMPATIBLE CONDUCTIVE INKS BASED ON CELLULOSE NANOFIBRILS FOR 3D PRINTING OF CONDUCTIVE BIOMEDICAL DEVICES AND FOR USE AS MODELS FOR STUDY OF NEURODEGENERATIVE DISORDERS AND CONNECTION BETWEEN BRAIN/NEURONS AND COMMUNICATION OR OTHER ELECTRONIC DEVICES
The present invention relates to preparation and use of nanocellulose fibrils or crystals such as disintegrated bacterial nanocellulose, tunicate-derived nanocellulose, or plant-derived nanocellulose, together with carbon nanotubes, as a biocompatible and conductive ink for 3D printing of electrically conductive patterns. Biocompatible conductive bioinks described in this invention were printed in the form of connected lines onto wet or dried nanocellulose films, bacterial cellulose membrane, or tunicate decellularized tissue. The devices were biocompatible and showed excellent mechanical properties and good electrical conductivity through printed lines (3.8·10−1 S cm−1). Such scaffolds were used to culture neural cells. Neural cells attached selectively on the printed pattern and formed connective networks. The devices prepared by this invention are suited as bioassays to screen drugs against neurodegenerative diseases such as Alzheimer's and Parkinson's, study brain function, and/or be used to link the human brain with electronic and/or communication devices. They can also be implanted to replace neural tissue or stimulate guiding of neural cells. They can also be used to stimulate the heart by using electrical signaling or to repair myocardial infarction and/or damage related thereto.