A deep learning (DL) network corrects/performs sinogram completion in computed tomography (CT) images based on complementary high- and low-kV projection data generated from a sparse (or fast) kilo-voltage (kV)-switching CT scan. The DL network is trained using inputs and targets, which respectively generated with and without kV switching. Another DL network can be trained to correct sinogram-completion errors in the projection data after a basis/material decomposition. A third DL network can be trained to correct sinogram-completion errors in reconstructed images based on the kV-switching projection data. Performance of the DL network can be improved by dividing a 3D convolutional neural network (CNN) into two steps performed by respective 2D CNNs. Further, the projection data and DLL can be divided into high- and low-frequency components to improve performance.