In some embodiments, data sensed and/or operational parameters used during a catheterization procedure are used in the motion frame-rate updating and visual rendering of a simulated organ geometry. The organ geometry is rendered as a virtual material using a software environment (preferably a graphical game engine) which applies simulated optical laws to material appearance parameters affecting the virtual material's visual appearance, as part of simulating a scene comprising the simulated organ geometry, and optionally also comprising simulated views of a catheter probe used for sensing and/or treatment. Optionally, measurements of and/or effects on tissue by sensing and/or commanded probe-tissue interactions are converted into material appearance changes, allowing dynamic visual simulation of intra-body states and/or events based on optionally non-visual input data. In some embodiments, physiology, motion physics, and/or other physical processes are simulated based on live inputs as part of associating material appearance properties to the simulated tissue's geometry.