Porous implant material having a plurality of metal bodies having different porosity rates which are bonded with each other at bonded-boundary surface F parallel to a first direction, wherein: a bonded body of the metal bodies has an entire porosity rate of 50% to 92% the metal body having higher porosity rate is a porous metal body having a three-dimensional network formed from a continuous skeleton in which a plurality of pores are interconnected the metal body having lower porosity rate has a porosity rate of 0 to 50% and an area-occupation rate of 0.5% to 50% in a cross-section surface orthogonal to an axial direction which agrees with the first direction along the bonded-boundary surface and a compressive strength compressing in a direction parallel to the bonded-boundary surface is 1.4 times to 10 times of a compressive strength compressing in a direction orthogonal to the bonded-boundary surface.