Provided are devices for bone tissue engineering, comprising a metal or metal-based composite member comprising an interior macroporous structure with porosity varying from 0-90% (v), the member comprising a surface region having a surface pore size, porosity, and composition designed to encourage cell growth and adhesion thereon, to provide a device engineered for a particular recipient subject. Engineered devices may further comprises a gradient of pore size, porosity, and material composition extending from the surface region throughout the interior of the device, wherein the gradient transition is continuous, discontinuous or seamless to promote cell in-growth. Additional aspects provide methods for bone tissue engineering, comprising use of a metal or metal-based composite member comprising an interior porous structure, wherein the pore size, porosity and material composition is selected to provide a device having an optimal density and/or elastic modulus and/or compression strength for a specific recipient. Fabrication methods are provided.