The invention provides a system for the preshearing based control of the flow and deformation behavior, i.e., the setting kinetics, and the time dependent shear viscosity, elasticity of aqueous cementitious suspensions that can be used for bone repair and regeneration. The dynamic cement microstructure is tailored to the demands of the surgical tasks (faster/slower setting) or additive manufacturing tasks (lower/higher viscosity) by application of various preshearing conditions. The relationships between the preshearing and pressurization conditions and the setting kinetics and the time dependent changes in elasticity and viscosity are complex and characterization of viscoelastic properties using advanced rheological characterization techniques including small-amplitude oscillatory and steady torsional rheometry is needed a priori to enable such tailoring. The preshearing system is intended to give control on the injectability and setting time of any calcium phosphate cement formulation to the surgeon during an orthopedic surgery where a batch of bone cement is processed. Other possible utilizations of the system include controlling the setting kinetics, shear viscosity and facilitating the resultant flow stability of cementitious ceramic suspensions processed in direct ink writing assemblies for additive manufacturing of cement constructs, in injection systems for restoration and fracking.