The present invention relates to a rotary rod for 3D bio-printing, in which the rotary rod is arranged horizontally and is driven to rotate, the rotary rod has a hollow structure and provided with at least one hole in a surface thereof, such that during a 3D bio-printing process, a nutrition solution passes through the hollow structure and a portion of the nutrition solution exudes via at least one hole. The present invention further provides a 3D bio-printing platform for supplying nutrition, comprising the rotary rod and a nutrition supply system, and a method of printing a tubular tissue using the bio-printing platform. The present invention, which reduces the possibility of resulting in tissue collapse from the effect of gravity, provides a new method of 3D bio-printing a tubular tissue and supplying nutrition in a printing process, with a wide application prospect.