您的位置: 首页 > 农业专利 > 详情页

Methods for using feature vectors and machine learning algorithms to determine discriminant functions of minimum risk linear classification systems
专利权人:
Denise Reeves
发明人:
Denise Reeves
申请号:
US16523793
公开号:
US10657423B2
申请日:
2019.07.26
申请国别(地区):
US
年份:
2020
代理人:
摘要:
Methods are provided for determining discriminant functions of minimum risk linear classification systems, wherein a discriminant function is represented by a geometric locus of a principal eigenaxis of a linear decision boundary. A geometric locus of a principal eigenaxis is determined by solving a system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a minimum risk linear classification system in statistical equilibrium. Feature vectors and machine learning algorithms are used to determine discriminant functions and ensembles of discriminant functions of minimum risk linear classification systems, wherein distributions of the feature vectors have similar covariance matrices, and wherein a discriminant function of a minimum risk linear classification system exhibits the minimum probability of error for classifying given collections of feature vectors and unknown feature vectors related to the collections.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/
相关发明人
相关专利

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充