Methamphetamine is a highly addictive psychostimulant that causes profound damage to the brain and other body organs. Post mortem studies of human tissues have linked the use of this drug to diseases associated with aging, such as coronary atherosclerosis, but the molecular mechanism underlying these findings remains unknown. We report now that methamphetamine accelerates cellular senescence in vitro and activates transcription of genes involved in cell-cycle control and inflammation in vivo by stimulating production of the sphingolipid messenger ceramide. This pathogenic cascade is triggered by reactive oxygen species, generated through methamphetamine metabolism via cytochrome P450-2D6, which recruit nuclear factor (NF)-KB to induce expression of enzymes in the de novo pathway of ceramide biosynthesis. Inhibitors of ceramide formation prevent methamphetamine-induced senescence and attenuate systemic inflammation and health deterioration in rats self-administering the drug. The results support therapeutic approaches to reduce the adverse consequences of methamphetamine abuse and improve effectiveness of treatments.