To provide a simulation system of cardiac function utilizing a cardiac structure model which is generated based on an appropriate composite material view representing the myocardial tissue. A simulation system of cardiac function to predict a change in cardiac geometry using a cardiac structure model contains a material specification input part 11 to determine both connective tissue data and myocyte data, a geometry data input part 13 to input geometry data of three-dimensional geometry of a heart, and a cardiac-structure-model construction part 14 wherein a cardiac structure model assumes assembly of finite elements based on continuum data of three-dimensional geometry defined by geometry data and made of composite material containing matrix and reinforcement fiber, and possesses mechanical properties of reinforcement fiber reflecting mechanical properties of connective tissue data and mechanical properties of matrix reflecting mechanical properties of myocyte data. The simulation system also contains a simulation part 15 which predicts a change of geometry of the cardiac structure model produced by pressure load utilizing finite element method with computation.