The present disclosure provides wearable apparatus and method for calculating drift-free plantar pressure parameters for gait monitoring of an individual. Most conventional techniques use different kind of sensors placed in in-sole based wearable apparatus but are costly and not effective in calculating accurate plantar pressure parameters. The disclosed wearable apparatus uses off-the shelf piezoelectric sensors that are widely available in market with less cost. The drift-free plantar pressure parameters are calculated using drift-free static pressure data obtained by numerically integrating acquired dynamic sensor data from the piezoelectric sensors, using a LiTCEM correction mechanism. A 6-DOF Inertial Measurement Unit (IMU sensor) helps in isolating zero-pressure duration indicating when a foot of the individual is in air during a stride, while obtaining the drift-free static pressure data. The disclosed wearable apparatus calculate the drift-free plantar pressure parameters for long duration and facilitates monitoring walking patterns of the individual.