NANOPARTICULES DE MÉTAL NOBLE ENROBÉES DE COLORANT ET ENCAPSULÉES DOTÉES DE PROPRIÉTÉS AMÉLIORÉES DE DIFFUSION RAMAN EXALTÉE DE SURFACE, UTILISÉES COMME AGENTS DE CONTRASTE
The present disclosure provides semiconductor-metal composite nanoparticles with optical properties that are superior to those of pure materials for use as contrast agents. The composites include noble metal nanoparticles having a layer of linker molecules being bound to the surface of the noble metal nanoparticle and a layer of dye molecules bound to the layer of linker molecules. The dye molecules are selected such that they form an ordered structure that exhibits a collective absorption band shift, compared to the individual dye molecule, when bound to the noble metal nanoparticle. This structure is encapsulated in a stabilizing coating layer forming a multi-shell structure with properties suitable for biosensing and other detection applications which exhibit enhanced Raman scattering compared to nanoparticles having dye molecules bound thereto not in the ordered structure.