A system for visualizing movement of structures within a patient's chest is described herein. The system includes an electromagnetic tracking system, a computing device and a display. The computing device includes a processor configured generate a 3D model of an interior of the patient, obtain positions of EM sensors for the 3D model, determine positions of the EM sensors at intervals during the respiratory cycle, determine positions of the EM sensors at maximum tidal volume and minimum tidal volume, determine differences between the positions of the EM sensors at maximum tidal volume and for the 3D model, generate a 3D model at maximum tidal volume based on the differences between the positions of the EM sensors at maximum tidal volume and for the 3D model, and store in memory the 3D model at maximum tidal volume.