您的位置: 首页 > 农业专利 > 详情页

一种基于脉冲群智能算法并结合STFT-PSD和PCA的癫痫时期分类方法
专利权人:
北京工业大学
发明人:
段立娟,连召洋,陈军成,乔元华
申请号:
CN201910940945.4
公开号:
CN110680313A
申请日:
2019.30.09
申请国别(地区):
CN
年份:
2020
代理人:
摘要:
本文公开了一种癫痫时期特征提取及分类方法。首先,对原始的癫痫脑电数据进行随机打乱预处理,并分别划分4折的训练集和测试集。其次,采用结合方法对预处理后的数据提取特征,一方面,通过WPT或STFT‑PSD提取非线性的时频特征,然后,在得到的时频特征上再结合PCA算法提取脑电数据的主成分特征,并消除噪声和冗余特征,并作为特征提取的最终特征。最后,采用脉冲神经网络对提取的特征做分类分析,脉冲神经网络算法不仅考虑个体互助和信息交互,拥有很强的鲁棒性;并且它模拟的神经元更加接近大脑中真实的神经元,考虑更多的时间信息,拥有更强的计算能力。
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充