#$%^&*AU2016202374B220180531.pdf#####Abstract A computer-implemented method for characterizing circulatory blood volume is disclosed. The method has the steps of acquiring a biological signal that emulates the arterial pulse wave from a sensor. Two derived parameters, circulatory stress, which reflects a harmonic of heart rate, and circulatory blood flow, which reflects the amplitude of the unprocessed biological signal, are extrapolated from the biological signal, and are each compared to a threshold value and assessed to determine an adequacy of circulatory blood volume. In embodiments, the assessment of circulatory blood volume is used to manage a patient's cardiovascular autoregulatory function or the adequacy of transfer of fluids to and from the circulatory system, with the ultimate goal of achieving a circulatory blood volume that adequately supplies the demands of the patient's tissues and organs.