University of Maryland, Baltimore;The United States Of America As Represented By The Department Of Veterans Affairs;University of Maryland; Baltimore
发明人:
LILLEHOJ, Erik, P.,VERCELES, Avelino, C.,GOLDBLUM, Simeon, E.
申请号:
EP15873806
公开号:
EP3236995A4
申请日:
2015.12.23
申请国别(地区):
EP
年份:
2018
代理人:
摘要:
Pseudomonas aeruginosa flagellin protein recruits the mammalian host sialidase enzyme neuraminidase-1 (NEU1) to remove sialic acid residues from the extracellular domain of the mammalian cell-surface protein MUC1 (MUC1-ED), thereby exposing a cryptic binding site on the MUC1-ED protein backbone for flagellin binding. NEU1-driven MUC1-ED desialylation rapidly increases P. aeruginosa adhesion to the airway epithelium. MUC1-ED desialylation also increases MUC1-ED cleavage and shedding from the cell surface, where desialylated, shed MUC1-ED competitively blocks P. aeruginosa adhesion to cell-associated MUC1-ED. Presented herein are data showing that exogenously-administered, deglycosylated MUC1-ED peptides reduced adhesion of P. aeruginosa to airway epithelial cells. Also presented are data showing that administration of P. aeruginosa to mice in combination with deglycosylated MUC1-ED decreased P. aeruginosa recovered from the lungs at 48 hr and 72 hr post-infection. Such findings are extended to the methods of treatment and prevention of bacterial infections defined herein.