The invention relates to the method of altering the functional state of any mRNA enabling its selective and specific recognition and subsequent selective manipulation. The invention describes a universal principle for increasing the specificity and selectivity of molecular target recognition at the level of nucleic acids. The principle of the specific and selective recognition of nucleic acids is based on simultaneous recognition of two or more sequences of the target nucleic acid, whereas these have to be spaced from each other by a certain defined distance. Such method of nucleic acid recognition through specific recognition of well-defined sequences of the nucleic acid that are spaced from each other by a defined distance, minimizes the probability of stable binding of the interfering construct to inadvertent nucleic acids, thereby dramatically increasing the selectivity of recognition of the targeted nucleic acid. Specific recognition of defined sequences of a nucleic acid localized at a certain defined distance from each other is achieved by simultaneous complementary interference of short sequence-specific oligonucleotides being mutually interconnected by size-specific polymeric linking moiety.