Ciliary motion in the upper airway is the primary mechanism by which the body transports foreign particulate out of the respiratory system. The ciliary beating frequency (CBF) is often disrupted with the onset of disease. Current imaging of ciliary motion relies on microscopy and high speed cameras, which cannot be easily adapted to in-vivo imaging. M-mode optical coherence tomography (OCT) imaging is capable of visualization of ciliary activity, but the field of view is limited. The present invention features the development of a spectrally encoded interferometric microscopy (SEIM) system using a phase-resolved Doppler (PRD) algorithm to measure and map the ciliary beating frequency within an on face region. This novel high speed, high resolution system allows for visualization of both temporal and spatial ciliary motion patterns.