A method for removing tattoos using two laser beams and a multi-photon process is disclosed. A 0.1 to 100 nsec pulse secondary laser beam focused to 108 W/cm2 creates a temporary channel from the skin surface to the tattoo pigment. A 100 fsec pulse main laser beam is then guided through the channel to the pigment and focused to sufficient intensity, i.e., 1012 W/cm2 or more, to initiate a multi-photon process that breaks up the pigment, disrupting its light reflecting properties. The channel allows the main laser beam unobstructed passage to the pigments, resulting in efficient use of the main laser. The pigment fragments escape through the temporary channel or diffuse into the blood stream. A suitably configured Ti/Sapphire laser beam is split into two components, with an uncompressed component used as the secondary laser beam, and a compressed component as the main laser beam.