An integral closure mechanism is described to be used for implantable cuffs of tubular shapes. This mechanism relates to cuffs used to surround internal organ or tissue in animals and human for specific clinical applications or for evaluation purposes in biomedical research. The closure mechanism is designed to provide a safe and reliable way in keeping the cuff in its original dimension around biological tissue, and to assist in surgical implantation by introducing a convenient and less time consuming method to secure the cuff at the surgical site. To eliminate distortion of the implantable cuff by having an integral closure mechanism, the underlying body tissue is better protected from damages caused by compression of the cuff and from connective tissue overgrowing at the distorted sites. Thus, therapeutic attempts by using implantable cuffs may reach their desired potential in various applications.