您的位置: 首页 > 农业专利 > 详情页

PATIENT RISK STRATIFICATION BASED ON BODY COMPOSITION DERIVED FROM COMPUTED TOMOGRAPHY IMAGES USING MACHINE LEARNING
专利权人:
THE GENERAL HOSPITAL CORPORATION
发明人:
Synho Do,Florian Fintelmann,Hyunkwang Lee
申请号:
US16644890
公开号:
US20200211710A1
申请日:
2018.09.10
申请国别(地区):
US
年份:
2020
代理人:
摘要:
A system and method for determining patient risk stratification is provided based on body composition derived from computed tomography images using segmentation with machine learning. The system may enable real-time segmentation for facilitating clinical application of body morphological analysis sets. A fully-automated deep learning system may be used for the segmentation of skeletal muscle cross sectional area (CSA). Whole-body volumetric analysis may also be performed. The fully-automated deep segmentation model may be derived from an extended implementation of a Fully Convolutional Network with weight initialization of a pre-trained model, followed by post processing to eliminate intra-muscular fat for a more accurate analysis.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充