A system and method for determining patient risk stratification is provided based on body composition derived from computed tomography images using segmentation with machine learning. The system may enable real-time segmentation for facilitating clinical application of body morphological analysis sets. A fully-automated deep learning system may be used for the segmentation of skeletal muscle cross sectional area (CSA). Whole-body volumetric analysis may also be performed. The fully-automated deep segmentation model may be derived from an extended implementation of a Fully Convolutional Network with weight initialization of a pre-trained model, followed by post processing to eliminate intra-muscular fat for a more accurate analysis.