Methods for biomechanical mapping of the female pelvic floor may include the steps of inserting a vaginal tactile imaging probe into vagina; recording tactile responses for vaginal walls during vaginal wall deformation by moving a probe as well as dynamic pressure patterns during voluntary or involuntary muscle contractions in multiple test procedures; followed by calculating multiple biomechanical parameters characterizing vaginal tissue elasticity, pelvic support structures and dynamic pelvic functions. Individual biomechanical parameters may be visually represented by positioning their value within the established physiological parameter ranges varying from normal to diseased conditions. The methods may be used for identification of pelvic floor tissues with low elasticity, deteriorated or damaged pelvic support muscles and ligaments, and muscles with low contractive capability. Other methods include the steps of collecting clinical history and completing gynecological examinations of the pelvic floor and calculating probabilities of treatment success for pelvic diseases depending on a proposed treatment using a predictive mathematical model.