A haptic system for a minimally invasive, hand-held surgical instrument and the systems various parts including a graphical user haptic interface, one or more haptic interfaces associated with a hand-held handle used to control a sensorized end-effector of the surgical instrument or inserted catheters, associated hardware, and an operating system. The system enables users to acquire, read, modify, store, write, and download sensor-acquired data in real time. The system can provide: an open, universally compatible platform capable of sensing or acquiring physiological signals/data in any format processing of the sensor acquired data within an operating system and outputting the processed signals to hardware which generates tangible sensations via one or more haptic interfaces. These tangible sensations can be modified by the user in real time as the system ensures the temporal relationship of sensed fiducial events are not altered or shifted relative to the generated and displayed haptic signals.