An implantable device is provided for controlling hemorrhage in a body cavity, comprising an expandable balloon and a conduit for supplying a physiologically compatible fluid to inflate the balloon. When the balloon tamponade device is implanted or inserted into the body cavity, it is inflated with a physiologically suitable fluid, so that the balloon generally conforms to the body cavity and exerts compressive force against the walls, tissues or structures of the body cavity to control hemorrhage. The balloon may have a deforming means to limit expansion of the balloon in a direction to facilitate expansion of the balloon in another direction. The device may have additional tubes within the conduit, or a plurality of separate lumens within the conduit or tubes to allow drainage and irrigation to the body cavity. There is also provided a cuff for attachment of an external traction to the balloon tamponade, to facilitate the compressive effect of the device. In a preferred embodiment, there is provided a dual balloon tamponade in which two balloons are axially spaced along the conduit, providing a means to control hemorrhage from two distinct body cavities, such as a uterus and a vagina. There is also provided a method to control hemorrhage in a body cavity by implantation or insertion of the balloon tamponade, inflating the balloon with a fluid to a sufficient pressure and retaining the fluid pressure within the balloon for a sufficient period of time to determine whether hemorrhage has been controlled. A kit comprising the balloon tamponade apparatus is also provided.