您的位置: 首页 > 农业专利 > 详情页

Latent factor dependency structure determination
专利权人:
发明人:
Yunlong He,Yanjun Qi,Koray Kavukcuoglu
申请号:
US13649823
公开号:
US08977579B2
申请日:
2012.10.11
申请国别(地区):
US
年份:
2015
代理人:
摘要:
Disclosed is a general learning framework for computer implementation that induces sparsity on the undirected graphical model imposed on the vector of latent factors. A latent factor model SLFA is disclosed as a matrix factorization problem with a special regularization term that encourages collaborative reconstruction. Advantageously, the model may simultaneously learn the lower-dimensional representation for data and model the pairwise relationships between latent factors explicitly. An on-line learning algorithm is disclosed to make the model amenable to large-scale learning problems. Experimental results on two synthetic data and two real-world data sets demonstrate that pairwise relationships and latent factors learned by the model provide a more structured way of exploring high-dimensional data, and the learned representations achieve the state-of-the-art classification performance.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充