A shunt device for creating a shunt in an atrial septum includes magnets coupled to inner loops of a coil comprising at least two inner loops and two outer loops, with a diameter of each of the inner loops being less than a diameter of the outer loops. The coil is made of a shape memory alloy (SMA) and is adapted to exert a compressive force upon layers of tissue caught between the inner loops of the coil. The magnets are adapted to provide additional compressive force to adjacent inner loops of the coil, thereby further causing the coil to cut through the layers of tissue and create a shunt. The diameter of the resultant shunt is less than the diameter of the outer loops, thereby preventing the outer two loops from passing through the created shunt. At least one end of the coil has a connection means for connecting with a delivery device.