您的位置: 首页 > 农业专利 > 详情页

Dosimetric Features-Driven Machine Learning Model for DVHs/Dose Prediction
专利权人:
The Board of Trustees of the Leland Stanford Junior University
发明人:
Yong Yang,Lei Xing,Ming Ma
申请号:
US16697725
公开号:
US20200171325A1
申请日:
2019.11.27
申请国别(地区):
US
年份:
2020
代理人:
摘要:
A treatment planning prediction method to predict a Dose-Volume Histogram (DVH) or Dose Distribution (DD) for patient data using a machine-learning computer framework is provided with the key inclusion of a Planning Target Volume (PTV) only treatment plan in the framework. A dosimetric parameter is used as an additional parameter to the framework and which is obtained from a prediction of the PTV-only treatment plan. The method outputs a Dose-Volume Histogram and/or a Dose Distribution for the patient including the prediction of the PTV-only treatment plan. The method alleviates the complicated process of quantifying anatomical features and harnesses directly the inherent correlation between the PTV-only plan and the clinical plan in the dose domain. The method provides a more robust and efficient solution to the important DVHs prediction problem in treatment planning and plan quality assurance.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/
相关发明人
相关专利

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充