Composites and methods of producing a moldable bone substitute are described. A scaffold for bone growth comprises nanocrystalline hydroxyapatite (HA), a bioresorbable plasticizer, and a biodegradable polymer. Plasticizers of the invention include oleic acid, tocopherol, eugenol, 1,2,3-triacetoxypropane, monoolein, and octyl-beta-D-glucopyranoside. Polymers of the invention include poly(caprolactone), poly(D,L-Lactic acid), and poly(glycolide-co lactide). Methods of regulating porosity, hardening speed, and shapeability are also described. Composites and methods are described using nanocrystalline HA produced with and without amino acids. The scaffold for bone growth described herein displays increased strength and shapeability.