A virtual surgical system receives an image, such as a computer tomography (CT) scan, of an area of the patient in need of surgical reconstruction prior to an incision being made in a surgery. Bone fragments that are to be reduced are automatically selected using the virtual surgical system. The system performs surface matching techniques using surface data representing the contour of the end surfaces of the fragments to determine how the corresponding fragments should be oriented to perform the reduction. At least one of the fragments may then be transformed (e.g. via translation and/or rotation) to join the surfaces based on the matched surfaces. An image may be generated of the reconstructed area providing a virtual representation of a reconstructed object. Thus, before actual dissection of the area, and the subsequent physical surgical reduction of the bones, an image of the reconstructed object may be displayed such that a prosthesis may be determined and/or manufactured.