您的位置: 首页 > 农业专利 > 详情页

COPD CLASSIFICATION WITH MACHINE-TRAINED ABNORMALITY DETECTION
专利权人:
Siemens Healthcare GmbH
发明人:
Zhoubing Xu,Shikha Chaganti,Sasa Grbic
申请号:
US16275780
公开号:
US20200265276A1
申请日:
2019.02.14
申请国别(地区):
US
年份:
2020
代理人:
摘要:
For COPD classification in a medical imaging system, machine learning is used to learn to classify whether a patient has COPD. An image-to-image network deep learns spatial features indicative of various or any type of COPD. The pulmonary function test may be used as the ground truth in training the features and classification from the spatial features. Due to the high availability of pulmonary function test results and corresponding CT scans, there are many training samples. Values from learned features of the image-to-image network are then used to create a spatial distribution of level of COPD, providing information useful for distinguishing between types of COPD without requiring ground truth annotation of spatial distribution of COPD in the training.
来源网站:
中国工程科技知识中心
来源网址:
http://www.ckcest.cn/home/
相关发明人
相关专利

意 见 箱

匿名:登录

个人用户登录

找回密码

第三方账号登录

忘记密码

个人用户注册

必须为有效邮箱
6~16位数字与字母组合
6~16位数字与字母组合
请输入正确的手机号码

信息补充