A porous implant design method includes defining a design volume for a porous implant, a load to be borne by the design volume, and an objective function solution characteristic related to the design volume. Next, the load is divided into a plurality of sub-loads and an optimization procedure is performed: until all sub-loads have been applied, one of the plurality of sub-loads is applied to the material in the design volume, material from the design volume is removed such that remaining material within the design volume is capable of bearing one of the plurality of sub-loads while satisfying the objection function solution characteristic; the remaining material defines a void space without material, the void space is set as a new design volume for any remaining sub-loads, the new design volume is set as being full of material. Then, the remaining material from each cycle of the optimization is combined.